On the Reversibility of Hydrogen Storage in Novel Complex Hydrides
نویسندگان
چکیده
A comparison of the hydrogen release and uptake (cycling) capability of Ti-doped NaAlH4, LiAlH4 and Mg(AlH4)2 as a function of Ti dopant concentration, temperature, pressure, and cycle number is reported. Temperature programmed desorption revealed hydrogen release capacities of around 3 wt% at 140 C, 3 wt % at 100 C and 6 wt% at 150 C, respectively for the Ti doped Na, Li and Mg alanates. In the same order, release capacities of 0.5, 2.0 and 1.5 wt% were obtained in 150, 6 and 150 min during constant temperature desorption at 90 C. Although all three alanates exhibit striking characteristics that make them potential hydrogen storage materials, it remains that only Ti-doped NaAlH4 exhibits around 3 wt % reversibility under reasonable conditions.
منابع مشابه
Modified Borohydrides for Reversible Hydrogen Storage (2)
This paper reports the results in the effort to destabilize lithium borohydride for reversible hydrogen storage. A number of metals, metal hydrides, metal chlorides and complex hydrides were selected and evaluated as the destabilization agents for reducing dehydriding temperature and generating dehydriding-rehydriding reversibility. It is found that some additives are effective. The Raman spect...
متن کاملThe Impact of Nanoporous Carbon on the Hydrogen Storage Properties of Light Metal Hydrides
Introduction Light metal hydrides are candidates for compact and efficient reversible on-board hydrogen storage. However, at the moment no known material fulfills all requirements regarding hydrogen content, release temperature, and reversibility simultaneously. Binary light metal hydrides generally are thermodynamically too stable, while in addition boronhydrides, alanates and other complex sy...
متن کاملHydrogen storage in complex metal hydrides
Complex metal hydrides such as sodium aluminohydride (NaAlH4) and sodium borohydride (NaBH4) are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibil...
متن کاملA self-catalyzing hydrogen-storage material.
Conventional (e.g. MgH2) and complex hydrides (e.g. alanates, borohydrides, and amides) are the two primary classes of solid-state hydrogen-storage materials. Many of these “high-density” hydrides have the potential to store large amounts of hydrogen by weight (up to 18.5 wt% for LiBH4) and/or volume (up to 112 gL!1 for MgH2), values that are comparable to the hydrogen content of gasoline (15.8...
متن کاملDensity Functional Studies on Crystal Structure and electronic properties of Potassium Alanate as a candidate for Hydrogen storage
Potassium Alanate is one of the goal candidates for hydrogen storage during past decades. In this report, initially the Density Functional Theory was applied to simulate the electronic and structural characteristic of the experimentally known KAlH4 complex hydride. The relaxation of unit cell parameters and atomic positions was performed until the total residual force reduced less than 0.001ev ...
متن کامل